FEATURES and PROCESSING CONDITIONS of CUT KNURLING.

FEATURES

Processing productivity is enhanced compared with the rotating forming method. (Productivity depends on materials, processing length, applied machines, etc.)

- The cut knurling method can be applied to difficult-to-process materials (such as copper alloy, aluminum, stainless steel, resin, and so on)
- Expansion of the diameter of materials can be reduced to a minimum through cut knurling processing.
- The head of the holder is designed to be minimum in size and sturdy to be as diverse as possible.
- The load given to the machine at time of cut knurling processing is reduced enough to ensure the retention of precision. Small-diameter and cylindrical materials can be processed.
- Special ball bearings are provided between the knurling wheel and rotating axis to realize a smooth rotation and to avoid the clogging and sticking of cut chips, thereby lengthening the life of and preventing the damage to the wheel.

Processing Conditions

Table 1 Processing Conditions Table (Estimated Value)

Outside diameter	Materials	Carbon steels	Mild steel	Stainless steel	Aluminum	Copper	Brass	Nylon resin Remarks
0 10	VelocityV(m/min)	40	50	30	80	50	60	50
3~ 12	Speed S(mm/rev)	0.08	0.10	0.06	0.16	0.10	0.10	0.08
10 50	VelocityV(m/min)	40	50	30	80	50	60	50
12~ 50	Speed S(mm/rev)	0.10	0.12	0.08	0.20	0.12	0.12	0.10
	VelocityV(m/min)	35	45	25	75	45	55	45
50~ 250	Speed S(mm/rev)	0.10	0.12	0.08	0.20	0.12	0.12	0.10

Caution : The figure is indicated with reference to MC nylon (MC901) and dulacon (M90-44) Please contact us for figures of other materials.

1 Cut Speed (Revolution Speed)

$$Vm / min = \frac{\cdot D \cdot N}{1000}$$

D = Diameter of processing material N = No. of revolution per minute rpm

Peeding Speed

Smm / min = N \cdot S

S = Feeding value per revolution mm N = No. of revolution per minute rpm

Outting Value

The cutting value of the cut knurling holder is based

on approximately 80% of the knurling pitch.

 $TA = P \cdot 0.8$ P= knurling pitch

Table 2

6 5

4

Right drawing le for head portion

Scale fo

Scal

Swinging Angle of Head Portion for Cross Cut

Table 4 Processing Range of Stepped Part (Unit: mm)

KH-1CS20, KH-1CN20N		KH-1CA08, KH-1CA10		KH-2CS20,	KH-2CN20N	KH-2CA08, KH-2CA10		
KH-1CS25, KH-1CN25N		KH-1CA12, (R)		KH-2CS25,	KH-2CN25N	KH-2CA12, (R)		
	X (Step difference)	Y	X (Step difference)	Y	X (Step difference)	Y	X (Step difference)	Y
Ī	1.0 ~ 4.0	1.5 ~ 5.0	under 0.5	0.6	1.0 ~ 4.0	1.5 ~ 5.0	under 0.5	0.6
	over 4.0	8.5	0.5 ~ 2.0	0.6 ~ 3.5	4.0 ~ 7.0	5.0 ~ 8.5	0.5 ~ 2.0	0.6 ~ 3.5
			2.0 ~ 4.0	3.5 ~ 5.5	7.0 ~ 48.0	8.5	2.0 ~ 4.0	3.5 ~ 5.5
			over 4.0	5.5	over 48.0	25.0	over 4.0	5.5